國立陽明交通大學光電學院

登入 聯絡我們 陽明交大 English

首頁系所介紹影像與生醫光電研究所內文

系所介紹

師資陣容

李偉

職稱:特聘教授

辦公室位置:
奇美樓521室
辦公室電話:
#57826
信箱:
wei.lee@nycu.edu.tw
網頁:
https://scholar.nycu.edu.tw/zh/persons/wei-lee
專長:
液晶光電、
液晶物理、
光子晶體、
介電頻譜技術、
真空紫外至微波頻譜技術
研究:
1. 綠能、光學多穩態、軟性與快速應答液晶顯示器及其他光電元件。
2. 液晶、液晶/高分子複合物、含奈米粒子之液晶膠體的相變、光電、介電與電熱特性。
3. 電控、光控光子晶體與液態晶體複合結構之光通訊應用。
4. 液晶於無標記蛋白質與免疫生醫光電感測之應用。
5. 電控與光控超穎材料及元件。


學歷一覽

  • 學校名稱

    國別

    系所

    學位

    起迄年月

  • 阿拉巴馬大學伯明翰分校

    國別:美國

    系所:物理學系

    學位:博士

    起迄年月:1989/09–1993/12

經歷一覽

  • 服務機關

    職稱

    部門/系所

    擔任職務

    起迄年月

  • 國立陽明交通大學

    職稱:主任

    部門/系所:台南分部總管理中心

    擔任職務:主任

    起迄年月:2022/02–迄今

  • 國立陽明交通大學

    職稱:副主任

    部門/系所:台南分部

    擔任職務:副主任

    起迄年月:2021/12–迄今

  • 國立陽明交通大學

    職稱:專任教授

    部門/系所:影像與生醫光電研究所

    擔任職務:專任教授

    起迄年月:2021/02–迄今

  • 國立交通大學

    職稱:副主任

    部門/系所:台南分部

    擔任職務:分部副主任

    起迄年月:2020/08–2021/01

  • 俄羅斯科學院西伯利亞分院

    職稱:訪問學者

    部門/系所:柯壬斯基物理研究所

    擔任職務:訪問學者

    起迄年月:2018/09–2018/09

  • 中華民國液態晶體學會

    職稱:監事

    部門/系所:

    擔任職務:監事

    起迄年月:2018/01–迄今

  • 國際液態晶體學會

    職稱:理事

    部門/系所:

    擔任職務:理事

    起迄年月:2016/07–迄今

  • 俄羅斯科學院西伯利亞分院

    職稱:訪問學者

    部門/系所:柯壬斯基物理研究所

    擔任職務:訪問學者

    起迄年月:2015/08–2015/09

  • 美國光學學會

    職稱:委員

    部門/系所:光學材料技術研究小組

    擔任職務:委員

    起迄年月:2015/01–2017/12

  • 中華民國液態晶體學會

    職稱:理事長

    部門/系所:

    擔任職務:理事長

    起迄年月:2014/01–2017/12

  • 國立交通大學

    職稱:代理所長

    部門/系所:光電系統研究所

    擔任職務:代理所長

    起迄年月:2013/08–2015/07

  • 國立交通大學

    職稱:所長

    部門/系所:影像與生醫光電研究所

    擔任職務:所長

    起迄年月:2012/03–2015/07

  • 國立交通大學

    職稱:專任教授

    部門/系所:影像與生醫光電研究所

    擔任職務:專任教授

    起迄年月:2012/02–2021/01

  • 美國光學學會

    職稱:編輯

    部門/系所:《光學材料快訊》編輯部

    擔任職務:《光學材料快訊》編輯

    起迄年月:2011/01–2016/12

  • 俄羅斯科學院西伯利亞分院

    職稱:訪問學者

    部門/系所:柯壬斯基物理研究所

    擔任職務:訪問學者

    起迄年月:2010/08–2010/09

  • 美國中佛羅里達大學

    職稱:訪問光學教授

    部門/系所:光電學院

    擔任職務:訪問光學教授

    起迄年月:2009/08–2010/07

  • 金屬工業研究發展中心

    職稱:顧問

    部門/系所:

    擔任職務:顧問

    起迄年月:2007/09–2007/12

  • 中原大學

    職稱: 專任教授

    部門/系所:物理學系

    擔任職務: 專任教授

    起迄年月:2005/08–2012/01

  • 中原大學

    職稱:組長

    部門/系所:研發處研究推動組

    擔任職務:組長

    起迄年月:2003/08–2006/07

  • 中原大學

    職稱:專任副教授

    部門/系所:物理學系

    擔任職務:專任副教授

    起迄年月:2002/08–2005/07

  • 中原大學

    職稱:專任助理教授

    部門/系所:物理學系

    擔任職務:專任助理教授

    起迄年月:1997/08–2002/07

  • 美國俄州多麗都大學

    職稱:專任訪問助理教授

    部門/系所:物理與天文學系

    擔任職務:專任訪問助理教授

    起迄年月:1994/08–1997/07

  • 美國伯明罕阿拉巴馬大學

    職稱:專任講師

    部門/系所:物理學系

    擔任職務:專任講師

    起迄年月:1993/08–1994/06

  • 美國伯明罕阿拉巴馬大學

    職稱:兼任講師及研究助理

    部門/系所:物理學系

    擔任職務:兼任講師及研究助理

    起迄年月:1990/01–1993/07

  • 輔仁大學

    職稱:專任講師

    部門/系所:物理學系

    擔任職務:專任講師

    起迄年月:1988/08–1989/07

  • 健行工專(今健行科技大)

    職稱:兼任講師

    部門/系所:共同科

    擔任職務:兼任講師

    起迄年月:1988/02–1988/07

  • 國立交通大學

    職稱:專任講師

    部門/系所:電子物理系

    擔任職務:專任講師

    起迄年月:1987/08–1988/07

論文著作

2012/2迄今(2023/12/31)期刊論文著作清單

1. G.-F. Sung and W. Lee*, “Hybrid active–passive control of an unconventional smart window based on dye-doped dual-frequency liquid crystal,” Adv. Photonics Res. 4(12), 2300275-1–9 (2023).

2. Y.-C. Chang, S.-H. Yang, V. Ya. Zyryanov, and W. Lee*, “Electrically tunable thermoresponsive optic switch for smart window application based on dye-doped cholesteric liquid crystal,” J. Mol. Liq. 388, 122752-1–9 (2023).

3. W. Lee*, M. H. Godinho, D.-K. Yang, and V. Zyryanov, “Liquid-Crystalline Materials for Optical and Photonic Applications: introduction to the feature issue,” Opt. Mater. Express 13(8), 2422–2425 (2023).

4. G.-F. Sung, S.-Y. Chiu, Y.-C. Chang, Y.-C. Liou, C.-P. Yeh, and W. Lee*, “Electrically tunable defect-mode wavelengths in a liquid-crystal-in-cavity hybrid structure in the near-infrared range,” Materials 16(8), 3229-1–15 (2023).

5. T.-K. Chang, Y.-Y. Tseng, P.-C. Wu, M.-J. Lee*, and W. Lee*, “Optical and flexoelectric biosensing based on a hybrid-aligned liquid crystal of anomalously small bend elastic constant,” Biosens. Bioelectron. 232, 115314-1–7 (2023).

6. T.-K. Chang, M.-J. Lee*, and W. Lee*, “Signal amplification strategies for optical biodetection at the liquid crystal–solid interface [Invited Mini-review],” Liq. Cryst. 50(7–10), 1624–1634 (2023).

7. C.-H. Huang, C.-H. Wu, R. G. Bikbaev, M.-J. Ye, C.-W. Chen, T.-J. Wang, I. V. Timofeev, W. Lee, and K.-P. Chen*, “Wavelength- and angle-selective photodetectors enabled by graphene hot electrons with Tamm plasmon polaritons,” Nanomaterials 13(4), 693-1–9 (2023).

8. H. Shaban, J.-T. Hsieh, M.-J. Lee*, and W. Lee*, “Label-free optical and electrical immunoassays based on lyotropic chromonic liquid crystals: Implications of real-time detection and kinetic analysis,” Biosens. Bioelectron. 223, 115011-1–7 (2023).

9. I. V. Timofeev* and W. Lee*, “(Editorial) Special Issue: Soft photonic crystals and metamaterials,” Materials 15(22), 8096-1–4 (2022).

10. T.-K. Chang, P.-C. Tung, M.-J. Lee*, and W. Lee*, “A liquid-crystal aptasensing platform for label-free detection of a single circulating tumor cell,” Biosens. Bioelectron. 216, 114607-1–8 (2022).

11. B.-S. Chen, M.-J. Lee*, and W. Lee*, “Multimodal spectrometric and dielectric biosensing with an ionic-surfactant-doped liquid crystal,” Sens. Actuators. B Chem. 365, 131912-1–9 (2022).

12. T.-K. Chang, M.-J. Lee*, and W. Lee*, “Quantitative biosensing based on a liquid crystal marginally aligned by the PVA/DMOAP composite for optical signal amplification,” Biosensors 12(4), 218-1–13 (2022).

13. C.-H. Yu, P.-C. Wu, and W. Lee*, “Polymer stabilization of uniform lying helix texture in a bimesogen-doped cholesteric liquid crystal for frequency-modulated electro-optic responses,” Materials 15(3), 771-1–15 (2022).

14. N. V. Rudakova*, R. G. Bikbaev, P. S. Pankin, S. Ya. Vetrov, I. V. Timofeev, K.-P. Chen, and W. Lee, “Metal–dielectric polarization-preserving anisotropic mirror for chiral optical Tamm state,” Nanomaterials 12(2), 234-1–8 (2022).

15. Y.-Q. Wang, P.-C. Wu, M.-J. Lee*, and W. Lee*, “Photocontrolled capacitive biosensor based on photoresponsive azobenzene-doped liquid crystals for label-free protein assay,” J. Mol. Liq. 345, 117908-1–8 (2022).

16. G.-F. Sung, P.-C. Wu, V. Ya. Zyryanov, and W. Lee*, “Electrically active and thermally passive liquid- crystal device toward smart glass,” Photonics Res. 9(11), 2288–2295 (2021).

17. P.-C. Wu, C.-P. Pai, M.-J. Lee*, and W. Lee*, “A single-substrate biosensor with spin-coated liquid crystal film for simple, sensitive and label-free protein detection,” Biosensors 11(10), 374-1–14 (2021).

18. H. Shaban, P.-C. Wu, J.-H. Lee, and W. Lee*, “Dielectric and electro-optical responses of a dielectrically negative nematic liquid crystal doped with cationic surfactant,” Opt. Mater. Express 11(9), 3208–3222 (2021).

19. H. Shaban, M.-J. Lee*, and W. Lee*, “Label-free detection and spectrometrically quantitative analysis of the cancer biomarker CA125 based on lyotropic chromonic liquid crystal,” Biosensors 11(8), 271-1–14 (2021).

20. M.-Y. Lin, W.-H. Xu, R. G. Bikbaev*, J.-H. Yang, C.-R. Li, I. V Timofeev, W. Lee, and K.-P. Chen*, “Chiral-selective Tamm plasmon polaritons,” Materials 14(11), 2788-1–9 (2021).

21. H. Shaban, S.-C. Yen, M.-J. Lee*, and W. Lee*, “Signal amplification in an optical and dielectric biosensor employing liquid crystal-photopolymer composite as the sensing medium,” Biosensors 11(3), 81-1–15 (2021).

22. B.-R. Wu, J.-H. Yang, P. S. Pankin, C.-H. Huang, W. Lee, D. N. Maksimov, I. V. Timofeev, and K.-P. Chen*, “Quasi-bound states in the continuum with temperature-tunable Q factors and critical coupling point at Brewster’s angle,” Laser Photonics Rev. 15(5), 2000290-1–7 (2021).

23. M.-J. Lee*, C.-P. Pai, P.-C. Wu, and W. Lee*, “Label-free single-substrate quantitative protein assay based on optical characteristics of cholesteric liquid crystals,” J. Mol. Liq. 331C, 115756- 1–8 (2021).

24. W. Wu, P.-C. Wu, and W. Lee*, “All-electrical switching and electrothermo-optical response of a tristable smectic-A liquid crystal,” J. Mol. Liq. 325, 114566-1–6 (2021).

25. M.-J. Lee*, F.-F. Duan, P.-C. Wu, and W. Lee*, “Liquid crystal‒photopolymer composite films for label-free single-substrate protein quantitation and immunoassay,” Biomed. Opt. Express 11(9), 4915–4927 (2020).

26. M.-J. Lee* and W. Lee*, “Liquid crystal-based capacitive, electro-optical and dielectric biosensors for protein quantitation [Invited Mini-review],” Liq. Cryst. 47(8), 1145–1153 (2020).

27. M.-C. Yeh, S.-H. Yang, and W. Lee*, “Color tuning in thermo-sensitive chiral photonic liquid crystals based on the pseudo-dielectric heating effect,” J. Mol. Liq. 296, 112082-1–6 (2019).

28. N. Rudakova*, I. Timofeev, R. Bikbaev, M. Pyatnov, S. Vetrov, and W. Lee*, “Chiral optical Tamm states at the interface between an all-dielectric polarization-preserving anisotropic mirror and a cholesteric liquid crystal,” Crystals 9(10), 00502-1–12 (2019).

29. Y.-C. Lin, P.-C. Wu, and W. Lee*, “Frequency-modulated textural formation and optical properties of a binary rod-like/bent-core cholesteric liquid crystal,” Photonics Res. 7(11), 1258– 1265 (2019).

30. W.-L. Hsu, M.-J. Lee*, and W. Lee*, “Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules,” Biomed. Opt. Express 10(10), 4987–4998 (2019).

31. P.-C. Wu, G.-W. Wu, C.-H. Yu, and W. Lee*, “Voltage-induced pseudo-dielectric heating and its application for color tuning in a thermally sensitive cholesteric liquid crystal,” Liq. Cryst. 46(13–14), 2085–2093 (2019).

32. C.-H. Yu, P.-C. Wu, and W. Lee*, “Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal cell,” Crystals 9(4), 00183-1–10 (2019).

33. C.-M. Lin, P.-C. Wu, M.-J. Lee*, and W. Lee*, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators. B Chem. 282, 158–163 (2019).

34. V. Gunyakov*, I. Timofeev, M. Krakhalev, W. Lee, and V. Zyryanov, “Electric field-controlled transformation of the eigenmodes in a twisted-nematic Fabry–Pérot cavity,” Sci. Rep. 8(11), 16869-1–9 (2018).

35. P.-C. Wu, G.-W. Wu, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee*, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photonics Res. 6(12), 1094–1100 (2018).

36. N. V. Rudakova, I. V. Timofeev, S. Ya. Vetrov, and W. Lee*, “All-dielectric polarization- preserving anisotropic mirror,” OSA Continuum 1(2), 682–689 (2018).

37. Y.-L. Chiang, M.-J. Lee*, and W. Lee*, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).

38. P.-C. Wu, H.-L. Chen, N. V. Rudakova, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee*, “Electro- optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound,” J. Mol. Liq. 267, 138–143 (2018).

39. Y.-C. Hsiao, Z.-H. Yang, D. Shen, and W. Lee*, “Red, green, and blue reflections enabled in an electrically tunable helical superstructure,” Adv. Opt. Mater. 6(5), 1701128-1–6 (2018).

40. P.-C. Wu, A. Karn, M.-J. Lee*, W. Lee*, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).

41. Z.-W. Xie, J.-H. Yang, V. Vashistha, W. Lee, and K.-P. Chen*, “Liquid-crystal tunable color filters based on aluminum metasurfaces,” Opt. Express 25(24), 30764–30770 (2017).

42. C.-H. Yu, P.-C. Wu, and W. Lee*, “Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell,” AIP Adv. 7(10), 105107-1–8 (2017).

43. P.-C. Wu, C.-Y. Hsiao, and W. Lee*, “Photonic bandgap–cholesteric device with electrical tunability and optical tristability in its defect modes,” Crystals 7(7), 184-1–11 (2017).

44. Z.-H. Yang, Y.-C. Hsiao, D. Shen, and W. Lee*, “A thermally tunable narrowband selector based on a chiral nematic containing a binary thermosensitive chiral dopant mixture,” Mol. Cryst. Liq. Cryst. 644(1), 19–25 (2017).

45. Y.-C. Hsiao, E.-R. Yeh, and W. Lee*, “Advanced color-reflective dual-frequency cholesteric liquid crystal displays and the driving matrix,” Mol. Cryst. Liq. Cryst. 644(1), 12–18 (2017).

46. I. V. Timofeev,* P. S. Pankin, S. Ya. Vetrov, V. G. Arkhipkin, W. Lee, and V. Ya. Zyryanov, “Chiral optical Tamm states: Temporal coupled-mode theory,” Crystals 7(4), 113-1–15 (2017).

47. M.-J. Lee*, C.-H. Chang, and W. Lee*, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).

48. Y.-C. Hsiao, K.-C. Huang, and W. Lee*, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687–2693 (2017).

49. W. Lee*, C. B. de Araújo, G. Khanarian, and V. Zyryanov, “Feature issue introduction: colloidal systems,” Opt. Mater. Express 7(2), 654–657 (2017).

50. K.-C. Huang, Y.-C. Hsiao, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee*, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).

51. Y.-L. Nian, P.-C. Wu, and W. Lee*, “Optimized frequency regime for the electrohydrodynamic induction of the uniformly lying helix structure,” Photonics Res. 4(6), 227–232 (2016).

52. H.-T. Wang, P.-C. Wu, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee*, “Dynamic tuning and memory switching of defect modes in a hybrid photonic structure,” Crystals 6(10), 129-1–9 (2016).

53. Y.-C. Hsiao, C.-W. Su, Z.-H. Yang, Y. I. Cheypesh, J.-H. Yang, V. Yu. Reshetnyak, K.-P. Chen*, and W. Lee*, “Electrically active nanoantenna array enabled by varying molecular orientation of interfaced liquid crystal,” RSC Adv. 6, 84500–84504 (2016).

54. C.-H. Lin, M.-J. Lee*, and W. Lee*, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703-1–4 (2016).

55. P.-C. Wu, H.-T. Hsu, H.-L. Chen, and W. Lee*, “Dielectric characterization and voltage holding ratio of blue-phase cells,” Displays 44, 66–72 (2016).

56. Y.-C. Hsiao, S.-M. Huang, E.-R. Yeh, and W. Lee*, “Temperature-dependent electrical and dielectric properties of nematic liquid crystals doped with ferroelectric particles,” Displays 44, 61–65 (2016).

57. K.-P. Chen*, S.-C. Ye, C.-Y. Yang, Z.-H. Yang, W. Lee, and M.-G. Sun, “Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals,” Opt. Express 24(15), 16815–16821 (2016).

58. J.-C. Huang, Y.-C. Hsiao, Y.-T. Lin, C.-R. Lee, and W. Lee*, “Electrically switchable organo–inorganic hybrid for a white-light laser source,” Sci. Rep. 6, 28363-1–7 (2016).

59. P.-C. Wu, S.-Y. Yang, and W. Lee*, “Recovery of UV-degraded electrical properties of nematic liquid crystals doped with TiO2 nanoparticles,” J. Mol. Liq. 218, 150–155 (2016).

60. Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee*, and W. Lee*, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).

61. I. V. Timofeev*, V. A. Gunyakov, V. S. Sutormin, S. A. Myslivets, V. G. Arhipkin, S. Ya. Vetrov, W. Lee, and V. Ya. Zyryanov, “Geometric phase and o-mode blueshift in a chiral anisotropic medium inside a Fabry–Pérot cavity,” Phys. Rev. E 92(5), 052504-1–14 (2015).

62. Y.-C. Hsiao, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee*, “Hybrid anchoring for a color-reflective dual-frequency cholesteric liquid crystal device switched by low voltages,” Opt. Mater. Express 5(11), 2715–2720 (2015).

63. K.-C. Huang, Y.-H. Lee, and W. Lee*, “Reflective displays based on dye-doped bistable chiral-tilted homeotropic nematics,” Mol. Cryst. Liq. Cryst. 617(1), 100–106 (2015).

64. H.-T. Hsu, P.-C. Wu, and W. Lee*, “Dielectric and electro-optical properties of polymer- stabilized-blue-phase cells,” Mol. Cryst. Liq. Cryst. 617(1), 92–99 (2015).

65. Y.-C. Hsiao and W. Lee*, “Polymer stabilization of electrohydrodynamic instability in non- iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).

66. H.-W. Su, M.-J. Lee*, and W. Lee*, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004-1–9 (2015).

67. P.-C. Wu, L. N. Lisetski, and W. Lee*, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23(9), 11195–11204 (2015).

68. Y.-C. Hsiao and W. Lee*, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).

69. T.-Y. Tsai, P.-C. Wu, K.-T. Liao, H.-Y. Huang, C.-H. Lin, J.-S. Hsu*, and W. Lee*, “Purification of deteriorated liquid crystals by employing porous metal–organic-framework/polymer composites,” Opt. Mater. Express 5(3), 639–647 (2015).

70. S.-H. Sun, M.-J. Lee*, Y.-H. Lee, W. Lee*, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).

71. P.-C. Wu, C.-T. Hou, Y.-C. Hsiao, and W. Lee*, “Influence of methyl red as a dopant on the electrical properties and device performance of liquid crystals,” Opt. Express 22(25), 31347–31355 (2014).

72. W. Lee*, C.-T. Huang, K.-T. Liao, J.-S. Hsu, and C.-H. Lin, “Metal–organic frameworks for regeneration of degraded liquid crystals,” Mol. Cryst. Liq. Cryst. 601(1), 88–96 (2014).

73. Y.-H. Lee, K.-C. Huang, W. Lee*, and C.-Y. Chen, “Low-power displays with dye-doped bistable chiral-tilted homeotropic nematic liquid crystals,” IEEE/OSA J. Display Technol. 10(12), 1106–1109 (2014).

74. S.-C. Chen, P.-C. Wu, and W. Lee*, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).

75. P.-C. Wu, E.-R. Yeh, V. Ya. Zyryanov, and W. Lee*, “Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer,” Opt. Express 22(17), 20278–20283 (2014).

76. H.-W. Su, Y.-H. Lee, M.-J. Lee*, Y.-C. Hsu, and W. Lee*, “Label-free immunodetection of the cancer biomarker CA125 using high-∆n liquid crystals,” J. Biomed. Opt. 19(7), 077006-1–6 (2014).

77. H.-T. Wang, I. Timofeev, K. Chang, V. Ya. Zyryanov, and W. Lee*, “Tunable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal,” Opt. Express 22(12), 15097–15103 (2014).

78. H.-T. Wang, J.-D. Lin, C.-R. Lee, and W. Lee*, “Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer,” Opt. Lett. 39(12), 3516–3519 (2014).

79. Y.-J. Liu, P.-C. Wu, and W. Lee*, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. 596(1), 37–44 (2014).

80. W. Lee*, J. Park, V. Subramanian, and H. Takezoe, “Feature issue introduction: optical materials for flat panel displays,” Opt. Mater. Express 4(5), 1088–1091 (2014).

81. V. S. Sutormin, M. N. Krakhalev, O. O. Prishchepa, W. Lee, and V. Ya. Zyryanov*, “Electro-optical response of an ionic-surfactant-doped nematic cell with homeoplanar–twisted configuration transition [Invited],” Opt. Mater. Express 4(4), 810–815 (2014).

82. Y.-C. Hsiao, H.-T. Wang, and W. Lee*, “Thermodielectric generation of defect modes in a photonic liquid crystal,” Opt. Express 22(3), 3593–3599 (2014).

83. C.-T. Huang, K.-T. Liao, C.-H. Lin, J.-S. Hsu*, and W. Lee*, “Improved electric properties of degraded liquid crystal using metal–organic frameworks,” Appl. Phys. Express 6(12), 121701-1–4 (2013).

84. Y.-C. Hsiao and W. Lee*, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).

85. P.P. Banerjee*, D.R. Evans, W. Lee, V. Yu. Reshetnyak, and N. Tansu, “Hybrid organic–inorganic materials for novel photonic applications,” Appl. Opt. 52(22), HM1–3 (2013).

86. P.P. Banerjee*, D.R. Evans, W. Lee, V. Yu. Reshetnyak, and N. Tansu, “Hybrid organic–inorganic materials for photonic applications,” Opt. Mater. Express 3(8), 1149–1151 (2013).

87. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee*, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).

88. F.-C. Lin, P.-C. Wu, B.-R. Jian, and W. Lee*, “Dopant effect and cell-configuration-dependent dielectric properties of nematic liquid crystals,” Adv. Cond. Mat. Phys. 2013, 271574-1–5 (2013).

89. A. Y.-G. Fuh, W. Lee, and K.Y.-C. Huang*, “Derivation of extended Maxwell Garnett formula for carbon-nanotube-doped nematic liquid crystal,” Liq. Cryst. 40(6), 745–755 (2013).

90. P.-C. Wu and W. Lee*, “Phase and dielectric behaviors of a polymorphic liquid crystal doped with graphene nanoplatelets,” Appl. Phys. Lett. 102(16), 162904-1–4 (2013).

91. I. V. Timofeev*, V. G. Arkhipkin, S. Ya. Vetrov, V. Ya. Zyryanov, and W. Lee, “Enhanced light absorption with a cholesteric liquid crystal layer,” Opt. Mater. Express 3(4), 496–501 (2013).

92. C.-H. Chen, V. Ya. Zyryanov, and W. Lee*, “Switching of defect modes in a photonic structure with a tristable smectic-A liquid crystal,” Appl. Phys. Express 5(8), 082003-1–3 (2012).

93. T.-Y. Tsai*, C.-Y. Lee, C.-J. Lee, M.-Y. Lin, and W. Lee*, “Polymer-dispersed liquid crystal nanocomposites comprising montmorillonite clay modified by conducting pentamerous oligoaniline,” J. Mater. Chem. 22(26), 13050–13056 (2012).

94. I. V. Timofeev*, Y.-T. Lin, V. A. Gunyakov, S. A. Myslivets, V. G. Arkhipkin, S. Ya. Vetrov, W. Lee, and V. Ya. Zyryanov, “Voltage-induced defect mode coupling in a one-dimensional photonic crystal with a twisted-nematic defect layer,” Phys. Rev. E 85(1), 011705-1–7 (2012).


2012/2迄今(2023/12/31)專書、專章著作清單

1. I. V. Timofeev and W. Lee (Eds.), Soft Photonic Crystals and Metamaterials (MDPI, Basel, January 2023), 138 p. [ISBN 978-3-0365-6074-8 (Hbk); ISBN 978-3-0365-6073-1 (PDF)]

2. M. Krakhalev, V. Sutormin, O. Prishchepa, A. Gardymova, A. Shabanov, W. Lee, and V. Zyryanov*, “Liquid crystals doped with ionic surfactants for electrically induced anchoring transitions,” in Unconventional Liquid Crystals and Their Applications, edited by Wei Lee and Sandeep Kumar (De Gruyter, Berlin, July 19, 2021), Chap. 7, pp. 279–330 (ISBN-13: 978-3110583038).

3. M.-J. Lee* and W. Lee, “Liquid crystal-based biosensing: exploiting the electrical and optical properties of various liquid crystals in quantitative bioassays,” in Unconventional Liquid Crystals and Their Applications, edited by Wei Lee and Sandeep Kumar (De Gruyter, Berlin, July 19, 2021), Chap. 5, pp. 239–264 (ISBN-10: 3110583038).

4. A. R. Yuvaraj, W. Lee, and S. Kumar*, “Unconventional liquid crystals: chemical aspects,” in Unconventional Liquid Crystals and Their Applications, edited by Wei Lee and Sandeep Kumar (de Gruyter, Berlin, July 19, 2021), Chap. 2, pp. 109–151 (ISBN-13: 978-3110583038).

5. P.-C. Wu*, S. Kumar, and W. Lee, “Introduction: from conventional to unconventional liquid crystals,” in Unconventional Liquid Crystals and Their Applications, edited by Wei Lee and Sandeep Kumar (De Gruyter, Berlin, July 19, 2021), Chap. 1, pp. 1–108 (ISBN-10: 3110583038).

6. P.-C. Wu and W. Lee*, “Tunable and Memorable Optical Devices with One-Dimensional Photonic-Crystal/Liquid-Crystal Hybrid Structures,” in Optical Devices in Communication and Computation, edited by Peng Xi (InTech, Croatia, September 19, 2012), Chap. 4, pp. 55–80 (ISBN 978-953-51-0763-7).

專利

1. 李偉、李孟娟、孫士弘、蘇慧汶,《液晶感測器及用於檢測生物分子的方法》,臺灣發明專利第491877號,專利權自2015/7/11至2034/6/18止。

2. 黃成鼎、廖崑廷、徐芝珊、李偉、林嘉和、黃悉雅,《純化液晶的方法》,台灣發明專利第457419號,專利權自2014/10/21至2034/1/19止。

3. W. Lee and Y.-S. Lin, “Method for recovering properties of degraded liquid crystal,” China Patent No. ZL 2010 1 0185697.6, issued 2013/12/11 (–2030/5/21).

4. W. Lee, H.-Y. Chen, and Noel A. Clark, “Liquid crystal composite and device with faster electro-optical response characteristics,” Taiwan Patent No. I 410478, issued 2013/10/1 (–2028/1/14).

5. W. Lee and Y.-S. Lin, “Method for recovering properties of degraded liquid crystal,” Japan Patent No. 5364046, issued 2013/9/13 (–2030/6/11).

6. 李偉、林奕升,《恢復劣化液晶的方法》,台灣發明專利第390021號,專利權自2013/3/21至2029/10/7止。

7. W. Lee and Y.-S. Lin, “Method for recovering properties of degraded liquid crystal,” US Patent No. US 8,390,777 B2, issued 2013/3/5 (–2029/9/11).

8. 李偉、呂益昇,《具有層化相分離複合結構之液晶裝置及其形成方法》,台灣發明專利第385431號,專利權自2013/2/11至2027/7/5止。

9. 林育霆、李偉,《液晶顯示器之液晶盒的測量方法及其裝置》,台灣發明專利第379094號,專利權自2012/12/11至2029/4/2.

10. W. Lee and Y.-S. Lu, “Liquid crystal device with stratified phase-separated composite and method for forming the same,” China Patent No. ZL 2007 1 0143438.5, issued 2009/12/16.

招收研究生系統一覽

  • 入學年度

    可招收推甄碩士生名額

    可招收入學考碩士生名額

    細項

  • 112

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:3

    細項:點選觀看

  • 111

    可招收推甄碩士生名額:0

    可招收入學考碩士生名額:3

    細項:點選觀看

  • 110

    可招收推甄碩士生名額:1

    可招收入學考碩士生名額:2

    細項:點選觀看

  • 109

    可招收推甄碩士生名額:1

    可招收入學考碩士生名額:2

    細項:點選觀看

  • 108

    可招收推甄碩士生名額:1

    可招收入學考碩士生名額:2

    細項:點選觀看

  • 107

    可招收推甄碩士生名額:3

    可招收入學考碩士生名額:2

    細項:點選觀看

  • 106

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:3

    細項:點選觀看