國立陽明交通大學光電學院

登入 聯絡我們 陽明交大 English語系IconEnglish

:::

首頁系所介紹光電系統研究所碩士在職專班內文

系所介紹

師資陣容

崔容滿

職稱:教授

辦公室位置:
R424
辦公室電話:
#57793
信箱:
ymchoi@nycu.edu.tw
網頁:
https://scholar.nycu.edu.tw/zh/persons/yongman-choi
專長:
半導體材料、先進的奈米技術、綠色奈米光子學
研究:
太陽能電池、光偵測器、光催化和水電解

學歷一覽

  • 學校名稱

    國別

    系所

    學位

    起迄年月

  • Emory University

    國別:USA

    系所:Chemistry

    學位:Ph.D.

    起迄年月:2004. 5.

經歷一覽

  • 服務機關

    職稱

    部門/系所

    擔任職務

    起迄年月

論文著作

<After NCTU since 2019>
37. J. Xia, W. Lin, W. Gong, C. Jian, K. Sasaki, Y. Choi*, Y. Chen*, “Ammonia synthesis on protonic ceramic electrochemical cells under mild conditions,” Submitted.
36. F. He, Y. Huang, K. Xu, Y. Xu, F. Zhu, S. Guo, D. Han, H. Tao, L. Zhu, K. Sasaki, Y. Choi*, Z. Shao*, and Y. Chen*, “Tailoring the Structural Durability and Proton Conduction of Electrolytes for Highly Fuel-flexible and Reversible Ceramic Cells,” Energy & Environmental Science, Accepted (2025). (IF = 32.4)
35. F. He, H. Liu, Y. Xu, F. Zhu, K. Sasaki, Y. Choi*, Y. Liu*, Y. Chen*, “Conformal high-entropy oxide coatings enable fast and durable surface oxygen reactions,” Joule, 101957 (2025). (IF = 38.6)
34. Y.-W. Lin, Y.-T. Liu, L.-C. Huang, S.-C. Lin, S.-J. Chen, Y. Choi*, “Biomass energy for a sustainable Taiwan: Technologies, policies, and future prospects Biomass and bioenergy,” Biomass and Bioenergy, 199, 107969 (2025). (IF = 5.8)
33. C. Morales, R. Tschammer, T. Gouder, Y. Choi, D. Anjum, A. Baunthiyal, J.-O. Krisponeit, J. Falta, J. I. Flege, H. Idriss, “Stabilization of Ce3+ cations via U-Ce charge transfer in mixed oxides: consequences on the thermochemical water splitting to hydrogen,” Journal of Physics: Energy, 7(2), 025012 (2025). (IF = 7.0)
32. K. Xu, H. Zhang, Y. Xu, F. Zhu, F. He, Y. Liu, K. Sasaki, Y. Choi*, Y. Chen*, “An Efficient Construction of Nano-interfaces Enables the Excellent Coking Tolerance of Cermet Anodes,” Materials Today, 79, 28 (2024). (IF = 21.1)
31. Z. Du, K. Xu, F. Zhu, Y. Xu. F. He, H. Gao, W. Gong, Y. Choi*, Yu Chen*, “Indium-Doping-Induced Nanocomposites with Improved Oxygen Reaction Activity and Durability for Reversible Protonic Ceramic Electrochemical Cell Air Electrodes,” Advanced Functional Materials, 2409188 (2024). (IF = 18.5)
30. H. Zang, K. Xu, F. He, F. Zhu, Y. Zhou, W. Yuan, Y. Liu, M. Liu, Y. Choi*, Y. Chen*, Challenges and Advancements in the Electrochemical Utilization of Ammonia Using Solid Oxide Fuel Cells, Advanced Materials, 36, 2313966 (2024). (IF = 27.4)
29. K. Xu, H. Zang, Y. Xu, F. Zhu, F. He, K. Sasaki, Y. Choi*, Y. Chen*, “ Realizing Efficient Operation of Ni-cermet-based Fuel Cells on Hydrocarbons via an in situ Self-assembled Metal/oxide Nano-heterostructured Catalyst,” Applied Catalysis B-Environmental and Energy, 355, 124208 (2024). (IF = 20.3)
28. F. He, F. Zhu, K. Xu, Y. Xu, D. Liu, G. Yang, K. Sasaki, Y. Choi*, Y. Chen*, “A Highly Oxygen Reduction Reaction Active and CO2 Durable High-entropy Cathode for Solid Oxide Fuel Cells,” Applied Catalysis B-Environmental and Energy, 355, 124175 (2024). (IF = 20.3)
27. F. He, M. Hou, D. Liu, Y. Ding, K. Sasaki, Y. Choi*, S. Guo, D. Han, Y. Liu, M. Liu, Y. Chen*, “Phase segregation of a composite air electrode unlocks the high performance of reversible protonic ceramic electrochemical cells,” Energy & Environmental Science, 17, 3898-3907 (2024). (IF = 32.4)
26. H. Zhang, K. Xu, Y. Xu, F. He, F. Zhu, K. Sasaki, Y. Choi*, Y. Chen*, “In-situ Formed Catalysts for Active, Durable, and Thermal-stable Ammonia Protonic Ceramic Fuel Cells at 550 oC,” Energy & Environmental Science, 17, 3433-3442 (2024). (IF = 32.4)
25. J. Xia, F. Zhu, F. He, K. Xu, Y. Choi*, Y. Chen*, “Self-configured Composites of Ruddlesden-Popper Perovskite and Pr6O11 as Efficient and Durable Air Electrodes for Reversible Protonic Ceramic Electrochemical Cells,”Advanced Energy Materials, 2302964 (2023). (IF = 27.8)
24. Y.-W. Lin, Y.-S. Li, C.-W Chang, L.-C. Huang, T.-H. Yin, Y.-T. Liu, D.K. Park, C. Choi*, Y. Choi*, “Kinetic Analysis of Oxygen Evolution on Spin-coated Thin-film Electrodes via Electrochemical Impedance Spectroscopy,”Coatings, 13, 1957 (2023). (IF = 3.4)
23. Y. Xu, K. Xu, F. Zhu, F. He, H. Zhang, C. Fang, Y. Liu*, Y. Zhou, Y. Choi*, Y. Chen*, “A Low-Lewis-Acid-Strength Cation Cs+-Doped Double Perovskite for Fast and Durable Oxygen Reduction/Evolutions on Protonic Ceramic Cells,”ACS Energy Letters, 8, 4145 (2023). (IF = 22.0)
22. B.-J. Liu, T.-H. Yin, Y.-W. Lin, C.-W. Chang, H.-C. Yu, Y.T. Lim, H. Lee, C. Choi*, M.K. Tsai, Y. Choi*, “A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting,”Coatings, 13(8), 1461 (2023). (IF = 3.4)
21. H. Lee, T.W. Kim, S.H. Kim, Y.-W. Lin, C.-T. Li, Y. Choi*, C. Choi*, “Carbon Dioxide Capture and Product Characteristics Using Steel Slag in a Mineral Carbonation Plant,” Processes, 11, 1676 (2023). (IF = 3.5)
20. C.-C. Cheng, T.-Y. Lin, Y.-C. Ting, S.-H. Lin, Y. Choi, S.-Y. Lu*, Metal-organic frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional electrocatalysts for water electrolysis, Nano Energy, 112, 108450 (2023). (IF = 19.069)
19. F. He, F. Zhu, D. Liu, Y. Zhou, K. Sasaki, Y. Choi*, M. Liu*, Y. Chen*, "A Reversible Perovskite Air Electrode for Active and Durable Oxygen Reduction and Evolution Reactions via the A-site Entropy Engineering, Materials Today," Published online (2023). (IF = 31.041)
18. T.-H. Yin, B.-J. Liu, Y.-W. Lin, Y.-S. Li, C.-W. Lai, Y.-P. Lan, C. Choi*, H.-C. Chang*, Y. Choi*, "Electrodeposition of Copper Oxides as Cost-Effective Heterojunction Photoelectrode Materials for Solar Water Splitting," Coatings, 12, 1839 (2022). (IF = 3.236)
17. C.-J. Chang, C.-W. Lai, W.-C. Jiang, Y.-S. Li, C. Choi*, H.-C. Yu*, S.-J. Chen, Y. Choi*, "Fabrication and Characterization of P-Type Semiconducting Copper Oxide-Based Thin-Film Photoelectrodes for Solar Water Splitting," Coatings, 12, 1206 (2022). (IF = 3.236)
16. H. Zhang, K. Xu, F. He, Y. Zhou, K. Sasaki, B. Zhao, Y. Choi*, M. Liu*, Y. Chen*, "Surface regulating of a double-perovskite electrode for protonic ceramic fuel cells to enhance oxygen reduction activity and contaminants poisoning tolerance," Advanced Energy Materials, 12, 2200761 (2022). (IF = 29.368)
15. K. Pei, Y. Zhou, K. Xu, H. Zhang, Y. Ding, B. Zhao, W. Yuan, K. Sasaki, Y. Choi*, Y. Chen*, M. Liu*, "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, 13, 2207 (2022). (IF = 14.919)
14. C.-C. Cheng, Y.-X. Yeh, Y.-C. Ting, S.-H. Lin, K. Sasaki, Y. Choi*, S.-Y. Lu*, "Modulation of coordination environment enhances catalytic efficiency of single-atom electrocatalysts," Journal of Materials Chemistry A, 10, 8784 (2022). (IF = 12.732)
13. L. Song, Y. Cai, Y. Liu, X. Zhao, K. Kuttiyiel, N. Marinkovic, A. Frenkel, A. Kongkanand, Y. Choi, R. R. Adzic, K. Sasaki, "One-Step Facile Synthesis of High Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst," ACS Applied Energy Materials, 5, 5245 (2022). (IF = 6.024)
12. Y. Pan, H. Zhang, K. Xu, Y. Zhou, B. Zhao, W. Yuan, K. Sasaki, Y. Choi*, Y. Chen*, M. Liu*, "A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer," Applied Catalysis B-Environmental, 306, 121071 (2022). (IF = 19.503)
11. H. Zhang, Y. Zhou, K. Pei, Y. Ding, Y. Pan, K. Xu, K. Sasaki, Y. Choi*, Y. Chen*, M. Liu*, "An Efficient and Durable Anode for Ammonia Protonic Ceramic Fuel Cells," Energy & Environmental Science, 15, 287 (2022). (IF = 38.532)
10. J. Kim, M. Liu, Y. Chen, R. Murphy, Y. Choi*, Y. Liu, M. Liu*, "Understanding sulfur-poisoning impact upon methane reforming activity of a solid oxide fuel cell anode," ACS Catalysis, 11(21), 13556-13566 (2021). (IF = 13.08)
9. C.-L. Huang, K. Sasaki, D. S. Raja, C.-C. Cheng, C.-T. Hsieh, Y.-J. Wu, J.-T. Su, P.-Y. Cheng, Y. Choi*, S.-Y. Lu*, "Twinning enhances efficiencies of metallic catalysts toward electrolytic water splitting," Advanced Energy Materials, 11(46), 2170181 (2021). (IF = 29.368)
8. K. Pei, Y. Zhou, Y. Ding, K. Xu, H. Zhang, W. Yuan, K. Sasaki, Y. Choi*, M. Liu*, Y. Chen*, "An improved oxygen reduction reaction activity and CO2-tolerance of La0.6Sr0.4Co0.2Fe0.8O3-δ achieved by a surface modification with barium cobaltite coatings," Journal of Power Sources, 514, 230573 (2021). (IF = 9.127)
7. Y. Zhou, W. Zhang, N. Kane, Z. Luo, K. Pei, K. Sasaki, Y. Choi*, Y. Chen,* D. Ding, M. Liu*, “An efficient bifunctional air electrode for reversible protonic ceramic electrochemical cells,” Advanced Functional Materials, 31(40), 2105386 (2021) (IF = 16.836).
6. J. H. Kim, S. Yoo, R. Murphy, Y. Chen, Y. Ding, K. Pei, B. Zhao, G. Kim, Y. Choi*, M. Liu*, “Water-mediated surface self-assembly triggering a highly enhanced oxygen reduction path on double perovskites,” Energy & Environmental Science, 14(3), 1506-1516 (2021). (IF = 33.250)
5. Y. Choi, C. Choi*, S. Cho, M. Seo, S. Kim, H. Min, M. S. Oh, W. S. Chang, "Aqueous mineralization process of carbon dioxide from flue gas using Aspen Plus and exergy analysis," Journal of Korean Society for Atmospheric Environment, 37(1), 45-54 (2021). (KCI)
4. Y. Zhu, Z. He, Y. Choi*, H. Chen, X. Li, B. Zhao, Y. Yu, H. Zhang, K. Stoerzinger, Z. Feng, Y. Chen*, Meilin Liu*, "Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxide electrocatalysts," Nature Communications, 11, Article number: 4299 (2020). (IF = 12.121)
3. D. S. Raja, C.-L. Huang, Y.-A. Chen, Y. Choi, and S.-Y. Lu*, "Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities," Applied Catalysis B-Environmental, 279, 119375 (2020). (IF = 16.683)
2. Y. Ding*, Y. Choi, Y. Chen, K. C. Pradel, M. Liu*, Z. L. Wang*, "Quantitative nanoscale tracking of oxygen vacancy diffusion inside single ceria grains by in situ transmission electron microscopy," Materials Today, 38, 24 (2020) (Equally contributed first author). (IF = 24.372)
1. Y. Chen, S. Yoo, W. Zhang, J. Kim, Y. Zhou, K. Kai, N. Kane, B. Zhao, R. Murphy, Y. Choi*, M. Liu*, "Effective promotion of oxygen reduction reaction by in situ formation of nano-structured catalyst," ACS Catalysis, 9(8), 7137 (2019). (IF = 12.221)

專利

招收研究生系統一覽

  • 入學年度

    可招收推甄碩士生名額

    可招收入學考碩士生名額

    細項

  • 114

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:3

    細項:點選觀看

  • 113

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:3

    細項:點選觀看

  • 112

    可招收推甄碩士生名額:0

    可招收入學考碩士生名額:4

    細項:點選觀看

  • 111

    可招收推甄碩士生名額:1

    可招收入學考碩士生名額:2

    細項:點選觀看

  • 110

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:1

    細項:點選觀看

  • 109

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:2

    細項:點選觀看

  • 108

    可招收推甄碩士生名額:2

    可招收入學考碩士生名額:1

    細項:點選觀看

  • 107

    可招收推甄碩士生名額:1

    可招收入學考碩士生名額:0

    細項:點選觀看

  • 106

    可招收推甄碩士生名額:0

    可招收入學考碩士生名額:1

    細項:點選觀看