論文著作
https://scholar.google.com/citations?hl=en&user=tvTyhaUAAAAJ&view_op=list_works&sortby=pubdate
Liquid crystal and Photonics Devices
1. K. Kónyová, D. Miakota, V. Lacková, S.-C. Jeng, D. Węgłowska, F. Agresti, P. Kopčanský, N. Tomašovičová, “Effect of magnitude of voltage and magnetic field on memory effect in nematic phase of liquid crystal and their composites with aerosil and goethite nanoparticles,” J. Mol. Liquids, Vol. 400, 124511 (2024).
2. T.-H Wang, S.-C. Jeng*, “An active and passive controllable smart glass based on an eco-friendly aqueous solution,” Adv. Mater. Technol. Vol. 9, 2301396 (2024).
3. K. Zakutansk*, D. Miakot, V. Lackov, S.-C. Jeng, D. Węgłowsk, F. Agresti, M. Jarošová, P. Kopčanský, N. Tomašovičov, “Effect of temperature on memory effect in nematic phase of liquid crystal and their composites with aerosil and geothite nanoparticles,” J. Mol. Liquids, Vol. 391, 123357 (2023).
4. T.-Y. Tai, J.-W. Pan*, S.-C. Jeng*, “A low aberration liquid crystal lens for an immersive head-mounted display,” Opt. Laser Technol. Vol. 167, 109834 (2023).
5. A.-I. Hsu, W.-Y. Li, S.-C. Jeng*, “Manipulation of liquid crystal droplets by Optoelectronic Tweezers,” Opt. Laser Technol. Vol. 164, 109555 (2023).
6. Y.-K. Hong, J.-W. Pan*, S.-C. Jeng*, “Low aberration and fast response liquid crystal lens with optically compensated bend structures,” Opt. Laser Technol. Vol. 161, 109188 (2023).
7. Y. Chen, C.-K. Lee*, C.-T. Wang, S.-C. Jeng*, “Development of a compact broadband circular dichroism spectropolarimeter for circular polarizer applications,” Opt. Lasers Eng. Vol. 163, 107480 (2023).
8. Y.-H. Chen, J.-W. Pan*, S.-C. Jeng*, “A low speckle laser pico-projector using dynamic light scattering liquid crystal devices,” Displays Vol. 75, 102305 (2022).
9. Y. Chen, C.-K. Lee*, C.-T. Wang, Y.-B. Cheng, S.-C. Jeng*, “High-accuracy circular dichroism measurement using a liquid crystal polarization grating,” Opt. Lasers Eng. Vol. 158, 107181 (2022).
10. W.-W Chen, J.-W. Pan*, S.-C. Jeng*, “Circularly polarized optical microscope using a low aberration liquid crystal lens,” Opt. Lett. Vol. 46, 4434 (2021).
11. M.-C. Chan, T.-H. Liao, C.-S. Hsieh, S.-C. Jeng, G.-Y. Zhou, “Imaging of nanoscale birefringence using polarization-resolved chromatic confocal microscopy,” Opt. Express. Vol. 29, 3965 (2021).
12. Y. Lu, S.-C. Jeng*, “Applying Tamm plasmon polaritons for determining the birefringence of a thin film,” Opt. Lett. Vol. 46, 318 (2021).
13. T.-C. Hou, S.-C. Jeng*, “Application of Bombyx mori Silk Fibroin Films for Liquid-Crystal Devices,” ACS Appl. Bio Mater. Vol. 3. 8575 (2020).
14. J.-J. Gao, J.-W. Pan*, S.-C. Jeng*, “Low-aberration liquid crystal lens with positive and negative focal length,” Opt. Lett. Vol. 45, 5077 (2020).
15. S.-C. Jeng*, “Applications of Tamm plasmon-liquid crystal devices”, Liq. Cryst. Vol. 47, 1223 (2020).
16. V. Gdovinová, N. Tomašovičová, S.-C. Jeng, K. Zakutanská, P. Kula, P. Kopčanský,“Memory effect in nematic phase of liquid crystal doped with magnetic and non-magnetic nanoparticles”, J. Mol. Liquids, Vol. 282, 286 (2019).
17. H.-C. Cheng, C.-Y. Kuo, Y.-J. Hung, K.-P. Chen, and S.-C. Jeng*, “Liquid crystal active Tamm plasmon devices,” Phys. Rev. Appl., Vol. 9, 064034 (2018).
18. M.-Z. Chen, S.-H. Yang, S.-C. Jeng*, “Growth of ZnO Nanorods and Their Applications for Liquid Crystal Devices,” ACS Appl. Nano Mater., Vol. 1, 1879 (2018).
19. C.-W. Huang, and S.-C. Jeng*, “Polyhedral Oligomeric Silsesquioxane Films for Liquid Crystal Alignment,” Colloids Interfaces, Vol. 2, 9 (2018).
20. S.-G. Huang, K.-P. Chen, and S.-C. Jeng*, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express, Vol. 7, 1267-1273 (2017).
21. J.-W. Hu, S.-H. Yang, S.-C. Jeng*, “Annealed zinc oxide films for controlling the alignment of liquid crystals,” J. Mater. Sci., Vol. 52, 9539 (2017).
22. J.-W. Hu, S.-H. Yang, S.-C. Jeng*, “UV-treated ZnO films for liquid crystal alignment,” RSC Advances, Vol. 6, 52095 (2016).
23. Y.-F. Chung, M.-Z. Chen, S.-H. Yang and S.-C. Jeng*,“Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals,” ACS Appl. Mater. Interfaces, Vol. 7, 9619-9624 (2015).
24. J.-W. Hu, T.-A. Chen and S.-C. Jeng*, “Broadband cholesteric liquid crystal devices with poly(N-vinyl carbazole) microstructures”, Liq. Cryst. Vol. 42, 52-56 (2015).
25. M.-Z. Chen, W.-S. Chen, S.-C. Jeng*, S.-H. Yang and Y.-F. Chung, “Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications”, Opt. Express, Vol. 21, 29277-29282 (2013).
26. C.-E. Lee and S.-C. Jeng*, “Bistable liquid crystal devices with nanoparticle-coated polyimide alignment films”, Opt. Lett. Vol. 38, 1013-1015 (2013).
27. H.-S. Liu and S.-C. Jeng*, “Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)–polyimide nanocomposites”, Opt. Mat. Vol. 35, 1418-1421 (2013).
28. S.-J. Hwang, T.-A. Chen, and K.-R. Lin, and S.-C. Jeng*, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses”, Appl. Phys. B. Vol. 107, 151-155 (2012).
29. S.-C. Jeng, S.-J. Hwang, J.-S. Horng, and K.-R. Lin, “Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film”, Opt. Express, Vol. 18, 26325 (2010).
30. S.-C. Jeng, S.-J. Hwang, Y.-H. Hung, and S.-C. Chen (2010), “Cholesteric liquid crystal devices with nanoparticles aggregation”, Opt. Express, Vol. 18, 22572.
31. S.-J. Hwang, S.-C. Jeng*, I.-M. Hsieh (2010), “Nanoparticle-doped polyimide for controlling the pretilt angle of liquid crystals devices”, Opt. Express, Vol. 18, 16507.
32. W.-Y. Teng, S.-C. Jeng, C.-W. Kuo, J.-M. Ding, and W.-K. Chin (2010), “Flexible Homeotropic Liquid Crystal Displays Using Low-Glass-Transition-Temperature Poly(ethylene terephthalate) Substrates”, Jpn. J. Appl. Phys., Vol. 49, 010205.
33. S.-C. Jeng, S.-J. Hwang, C.-Y. Yang (2009), “Tunable Pretilt Angles Based on Nanoparticles-Doped Planar Liquid Crystal Cells”, Opt. Lett., Vol. 34, 455-457.
34. S.-J. Hwang, S.-C. Jeng*, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao (2009), “Characteristics of nanoparticles-doped homeotropic liquid crystal devices”, J. Phys. D: Appl. Phys., Vol. 42, 025102.
35. W.-Y. Teng, S.-C. Jeng*, C.-W. Kuo, Y.-R. Lin, C. -C. Liao, and W.-K. Chin (2008), “Nanoparticles-doped guest-host liquid crystal displays”, Opt. Lett., Vol. 33, 1663-1665.
36. C.-W. Kuo, S.-C. Jeng, H.-L. Wang, and C.-C Liao (2007), “Application of nanoparticles-induced vertical alignment in hybrid-aligned nematic liquid crystal cell”, Appl. Phys. Lett., Vol. 91, 141103.
37. S.-C. Jeng*, C.-W. Kuo, H.-L. Wang, and C.-C Liao (2007), “Nanoparticles-induced vertical alignment in liquid crystal cell”, Appl. Phys. Lett., Vol. 91, 061112.
Human Factors of Electronic Papers
1. Y.-T. Lin*, S.-L. Hwang, S.-C. Jeng, and R.J. Koubek, “Minimum ambient illumination requirement for legible electronic-paper display”, Displays, Vol. 32, 8-16 (2011).
2. A.-H. Wang*, S.-L. Hwang, H.-T. Kuo, and S.-C. Jeng, “Effects of ambient illuminance and electronic displays on users' visual performance for young and elderly users”, Journal of the Society for Information Display, Vol. 18, 629-634 (2010).
3. Y.-T. Lin*, P.-H. Lin, S.-L. Hwang, S.-C. Jeng, and C.-C. Liao, “Investigation of legibility and visual fatigue for simulated flexible electronic paper under various surface treatments and ambient illumination conditions”, Applied Ergonomics, Vol. 40, 922-928 (2009).
4. A.-H. Wang*, H.-T. Kuo, and S.-C. Jeng (2009/08), “Effects of ambient illuminance on users' visual performance using various electronic displays”, Journal of the Society for Information Display, Vol. 17, 665-669 (2009).
5. Y.-T. Lin*, P.-H. Lin, S.-L. Hwang, and S.-C. Jeng, “Surface treatment, reflectance, and age effects on electronic paper reading performance”, Journal of the Society for Information Display, Vol. 16, 1051-1062 (2008).
6. Y.-T. Lin*, P.-H. Lin, S.-L. Hwang, S.-C. Jeng, and Y.-R. Lin, “Ergonomic Evaluation of Electronic Papers: Influences of Anti-reflection Surface Treatment, Illumination, and Curvature on Legibility and Visual Fatigue”, Journal of the Society for Information Display, Vol. 16, 91-99 (2008).
7. A.-H. Wang*, C.-C. Tseng, S.-C. Jeng, and K.-I Huang, “Effects of electronic book display and inclination on users’ comprehension under various ambient illuminance conditions”, Journal of the Society for Information Display, Vol. 16, 101-106 (2008).
8. P.-H. Lin*, Y.-T. Lin, S.-L. Hwang, S.-C. Jeng and C.-C. Liao, “Effects of anti-glare surface treatment, ambient illumination and bending curvature on legibility and visual fatigue of electronic papers”, Displays, Vol. 29, 25-32 (2008).
9. D.-S. Lee, K.-K. Shieh, S.-C. Jeng and I-H. Shen*, “Effect of character size and lighting on legibility of electronic papers”, Displays, Vol. 29, 10-17 (2008).
10. A.-H. Wang*, C.-C. Tseng, and S.-C. Jeng, “Effects of bending curvature and text/background color-combinations of e-paper on subjects’ visual performance and subjective preferences under various ambient illuminance conditions”, Displays, Vol. 28, 161-166 (2007).
Neutrino Physics
1. S.-C. Jeng, W.M. Fairbank*, Jr., and M. Miyajima, “Measurements of the mobility of alkaline earth ions in liquid xenon”, Journal of Physics D: Applied Physics, Vol. 42, 035302 (2009).
2. D.S. Leonard, et al. (EXO collaboration), “Systematic study of trace radioactive impurities in candidate construction materials for EXO-200”, Nuclear Instruments and Methods in Physics Research, Section A, Vol. 591, 490-509 (2008).
3. F. Leport, et al. (EXO collaboration), “A liquid xenon ionization chamber in an all-fluoropolymer vessel”, Nuclear Instruments and Methods in Physics Research, Section A, Vol. 578, 409-420 (2007).
4. K. Wamba, et al. (EXO collaboration), “Mobility of thorium ions in liquid xenon”, Nuclear Instruments and Methods in Physics Research, Section A, Vol .555, 205-210 (2005).
C. Book Chapter
1. S.-C. Jeng*, and S.-J. Hwang, “Controlling the alignment of polyimide for liquid crystal devices,” in " High Performance Polymers – Polyimides Based – From Chemistry to Applications", ISBN 978-953-51-0899-3, InTech, Croatia (2012).